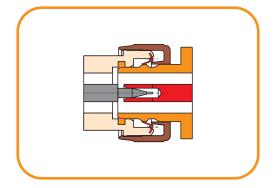
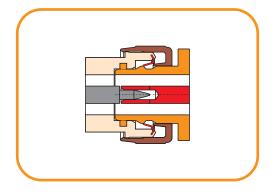
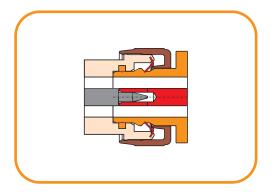


QUICK LOCK CONNECTORS---- CQMA.CQN Series

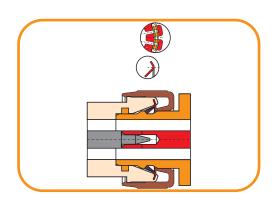

FUNCTIONAL DESCRIPTION


Before mating

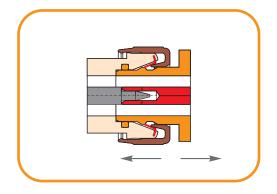
Mating



Mating



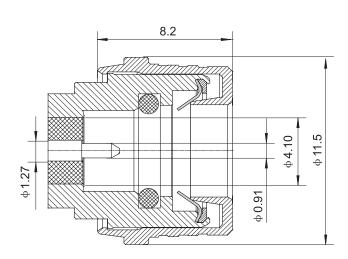
Mating

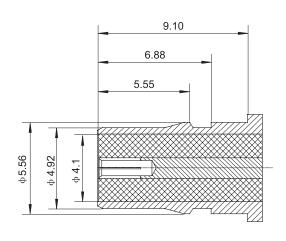


Locking

Consistent Locking

Unlocking


CQMA QUICK LOCK CONNECTORS



The HD CQMA connectors are designed for applications up to 6 GHz. The interface is based on the SMA dimension. Compared with traditional SMA, CQMA adopts a new snap-lock mechanism, widely applied to wireless base stations.

The CQMA interface has a very similar performance to the SMA, but additionally, it offers an easier, faster coupling operation, saving installation space, accomplishing high density connection.

INTERFACE DIMENSION

TECHNICAL DATA CQMA CONNECTORS

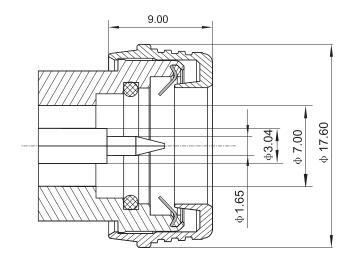
Electrical Characteristics	
Characteristic Impedance	50Ω
Frequency Range	DC-6GHz
Working Voltage	300V
Dielectric Withstanding Voltage	1000V
Contact Resistance	Center contact: 3.0 mΩ
	Outer contact : $2.5 m\Omega$
Insulation Resistance	5000 M Ω minimum
VSWR(straight connector)	Semi-rigid cable:≤1.10+0.02f(GHz)
	Flexible cable:≤1.15+0.02f(GHz)

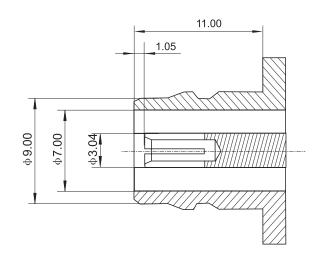
Mechanical Characteristics	
Center Contact Retention Force	≥27 N
Durability	200 cycles minimum

Environmental Characteristics	
Temperature Range	- 40°C to +85°C
Thermal Shock	MIL-STD-202 method 107 (test condition B)
Corrosion	MIL-STD-202 method 101 (test condition B)
Humidity	MIL-STD-202 method 106

Material and Plating	
Bodies	Brass,gold plated
Lock Sleeve	Brass, nickel or trimetal plated
Lock Denticulate Washer	Stainless steel, passivated
Center Contact	Male: Brass,gold plated
	Female:Beryllium copper, heat treated, gold plated
Insulator	PTFE
Gasket	Silicone rubber
Crimp Ferrule	Copper alloy, nickel plated

The above performance values shown are typical and may not relate to all connector styles available


CQN QUICK-LOCK CONNECTORS



The HD CQN connectors are designed for applications up to 11 GHz. The interface is based on the N dimension. Compared with traditional N,CQN adopts a new snap-lock mechanism, the outer dimensions are smaller than N, widely applied to wireless base stations.

The CQN interface has a very similar performance to the N, but additionally it offers an easier, faster coupling operation, no torque spanner is required to fasten the coupling nut, saving installation space, accomplishing high density connection.

INTERFACE DIMENSION

TECHNICAL DATA CQN CONNECTORS

Electrical Characteristics	
Characteristics Impedance	50Ω
Frequency Range	DC-11 GHz
Dielectric Withstanding Voltage	2500V
Contact Resistance	Center contact: 1.5mΩ
	Outer contact: 1.5mΩ
Insulation Resistance	$5000 M\Omega$ minimum
VSWR(straight connector)	≤1.30typ.

Mechanical Characteristics	
Center Contact Retention Force	≥28N
Durability	200 cycles minimum

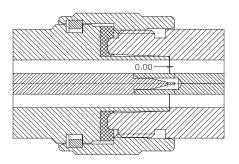
Environmental Characteristics	
Temperature Range	- 40°C to +85°C
Thermal Shock	MIL-STD-202 method 107, test condition B
Humidity	MIL-STD-202, method 106
Corrosion	MIL-STD-202, method 101, test condition B

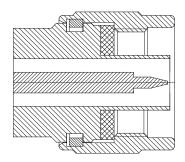
Material and Plating	
Bodies	Brass,nickel or trimetal plated
Lock Sleeve	Brass, nickel or trimetal plated
Lock Denticulate Washer	Stainless steel, passivated
Center Contact	Male: Brass,gold plated
	Female:Beryllium copper, heat treated, gold plated
Insulator	PTFE
Gasket	Silicone rubber
Crimp Ferrule	Copper alloy, nickel plated

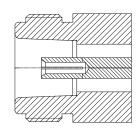
Interface Sealing Performance

The HD CQMA and CQN connectors have the same sealing performance as SMA and N connectors, which assure the contact parts of connectors wouldn't be polluted or eroded by harmful gas, such as dust, humidity, mildew, oxygen, sulfur dioxide etc.

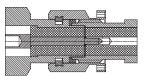
Sealing Performance Comparison

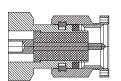

Type	Sealing Principle	Results
N, SMA	In the process of mating, sealing gasket would get strong upright force. There is no sliding friction between gasket and contact part. High sealing performance can still be accomplished after frequent insertion/extraction. Please refer to drawing I.	Excellent
QN	In the process of mating, sealing gasket wouldn't get strong upright force. There is sliding friction between gasket and contact part. Abrasion to surface would happen after frequent insertion/extraction, as a result of decreasing sealing performance. Please refer to drawing II.	Common
QMA	Sealing mechanism unsighted. Please refer to drawing II.	No sealing
CQN,CQMA	In the process of mating, sealing gasket would get strong upright force. There is no sliding friction between gasket and contact part. High sealing performance can still be accomplished after frequent insertion/extraction. Please refer to drawing III.	Excellent


Patent

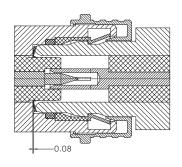

Huada has registered patent for CQMA and CQN in China, with Patent No.CN 2896603Y. The ones in America and Europe are under application.

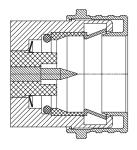
I

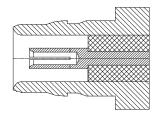




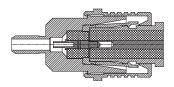
SMA

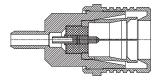




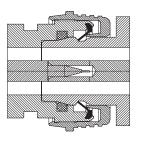


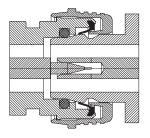
 \coprod

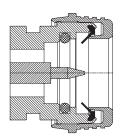

QN

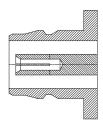


QMA

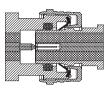




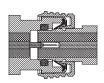



 \coprod

CQN



CQMA



MINI-CQMA QUICK-LOCK CONNECTORS

Mini-CQMA

